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Considered is the effect of gyrocompass free oscillations upon a system 

as a whole, with consideration of a possible error in the initial condi- 

tions of the integrating device. This problem, formulated by Ishlinskii 

[lli is solved for an orbitrary maneuver of the base. A simple relation 

between the calculated trajectory and the motion of the compass vertical 

is obtained. 

The system, suggested in [ 1 1 is considered. Section 1 describes 

system aspects most applicable to the investigations being carried out. 

Sections 2 and 3 prove two statements which reduce the problem from 

system oscillations as a whole to oscillations of the gyrocompass 

vertical. The mechanical model for the compass is given in Section 4. 

The investigation is carried out assuming all elements of the system 

to be ideal. 

1. The problem of determining earth coordinates for an object is equi- 

valent to the determination of its location on a stationary sphere S, co- 
inciding with the earth surface, but not taking part in the diurnal 

rotation of the earth. If the coordinate network for the sphere S co- 

incides with the earth geographical coordinate network at t = 0, then the 

ob.ject with the latitude 4(t) and the longitude A(t) on the network of 

sphere S has the current earth coordinates 4(t), A(t) - (It, respectively, 

where II is the angular velocity of earth diurnal rotation. ‘Ihis transfer 

causes no error, therefore in the following we consider the problem of 

determining the location on the sphere S. 

For the solution of this problem, [l 1 suggests the use of a digital 
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computer, a horizon compass and a directional gyroscope. 

‘ihe digital computer solves the system of equations 

d(P - = o,(t)sin&, 
dt 0, (t) - o,(t)cosBtanq, , 

dl, CQS JJ 
-& = o&)-- 

cos cp (1.1) 

If &, A,, 6, are given as initial conditions for $, X, 8 (Fig. 11, 
and if the coefficients are taken as certain functions o,(t) and w,(t), 
then the computer output yields the current coordinates +(tI, k(t) of a 
certain spherical trajectory. lhis computed trajectory originates from 

the point $el A, at an angle 6, towards the parallel, and in this motion 
the natural Darboux trihedron would have 

Such a trajectory is unique. 

lhe horizon compass and the directional compass give the angular velo- 
cities of the compass trihedron tir and oz. ‘Ibe quantity a_, is related to 

the angle c for separation of the gyroscopes by 

0 
28 cos 8 

Y= amR 

and or is measured directly by the directional gyroscope, the sensitive 
axis of which is rigidly attached to the compass trihedron. The aY- and 
oz-magnitudes are supplied to the computer as coefficients. 

Note that here and in the following the symbols c$wsl ,denote the 

angular velocity of the trihedron about its own axis, yI t I ; it is always 
specified, however, which trihedron is meant. 

If definite initial conditions are satis- 
fied for the compass t2 f , then the compass 

trihedron coincides with the natural Darboux 
trihedron for any motion of the base on the 
sphere S, and the computer is given o and 
o, for the ndrboux trihedron of the bise 
trajectory. If, at the same time, the given 
initial conditions $, , A,, 6, correspond to 
the initial position of the base and to the 
initial direction of its velocity, then, 
according to the stated characteristics of Fig. 1. 
the computer, the output of the computer 
will yield the current coordinates for the true trajectory of the base, 



If some initial conditions are not satisfied, the computed trajectory 
of the compass or the computer does not coincide with the true tra.jectory, 
but is related to it in a certain way. ‘lbe character of this relationship 
is clarified in the follkng sections. 

2 Let us consider the case when the required initial conditions for 
the compass are satisfied and the computer is given o and oz for the 
Darboux trihedron of the true base trajectory. We wil I show that in this 

case for arbitrary introduction of +a, A,, @* the computed trajectory is 

congruent with the true trajectory. 

In accordance with the characteristics of the computer, in this case 
the o (tl 

4 
and o,(t) of the Darboux trihedron for the computed trajectbry 

are 1 entically equal to the corresponding angular velocities of the 
Ilarboux trihedron for the true trajectory. It follows, therefore, that, 
independently of &, A,, 6,, , the following: are identically equal in pairs 
for both tra;j ectories: 

a) Velocities v(t), since Ut) = R oyttl; 

b) Traversed distances s(t), since s(t) is a definite integral of F’(t); 

c) Geodesic curvatures as functions of time Kg(t), since 

d) Geodesic curvatures as functions of distances Kg(s), since Kg(s) is 
already given .parametrically by functions K(t) and s(t). 

The last point indicates congruency. 

From the proof presented it follows that the general solution of 
system (1.1) for an arbitrary fixed pair of functions o,(t), o,(t) is 

obtained from any particular solution by recording it on an arbitrarily 
rotated spherical system of coordinates, Three constants, characterizing 
this rotation, play the role of three arbitrary constants in the general 
solution. 

Two close particular solutions (Fig. 21 are obtained from each other 
by rotation through a small angle 8, depending only upon the difference 
in the initial conditions of b, X,4+, and the angular distance along: the 
great circle between any points of these solutions corresponding to equal 
times does not exceed A. Obviously A = 6. '&us, the question to be con- 
sidered is the stability of any particular solution. 

It is important for the problem considered that, as was stated before, 
the existence of an error in the initial conditions 4et ho, @a does not 
produce a cumulative error in the determination-of current location. 
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Pig. 2. Fig. 3. 

Maximum possible error does not exceed some angle 6 dependent only on the 
initial error. The smaller the initial error, the smaller is the angle 6 
and it is zero when there is no initial error. 

3. We will prove the following statement for the general case when the 
necessary initial conditions for the compass are likewise unsatisfied, 
in order to utilize the results from the previous section. 

‘Ihe trihedron of a compass oscillating because of unsatisfied initial 
conditions, realizes physically the Darboux trihedron for the spherical 
trajectory of that point on the sphere S, whose true location vertical is 
at each moment colinear with that of the compass. In short, the axes of 
the compass trihedron are at each moment parallel to the corresponding 
axes of the Darboux trihedron for the indicated tra.jectory. 

If r,(t) is a unit vector of the z-axis for the l&rboux trihedron, 
then its x-axis is directed along s,(t) and y-axis along r,(t) x r,(t). 
In accordance with the compass equations [ 2-5 1 , 0% = 0 for the compass 
trihedron, therefore if r2( t) is a unit vector for the z-axis of the 
compass trihedron, then its x-axis is directed along k,(t) and the y-axis 

along r*(t) x G,(t). 

For the trihedrons considered rl( t ) G r2 (t ), whence 

il(t)=iz(t), rl(t)xil(t)=r,(t)xr2(t) 

‘Ihis proves the colinearity of the corresponding axes. 

It follows directly from the proof that, in the general case, the 
computer receives oy(t ) and oZ( t ) for the Darboux trajectory Riven in 
the formulation of the statement, and in accordance with Section 2 its 
congruent trajectory is calculable. 
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nus ) in the general case, when there is an error in the initial con- 
ditions of the compass and in the initial values 56, X,6, one can say the 
following about system performance (Fig. 3). A compass whose base is 
moving along an arbitrary tra.jectory A and which is oscillating because 
of unsatisfied initial conditions yields the parameters (o (t) and oZ(t) 
for the lkboux trihedron) for a different tra.jectory B. & is tra.jectory 
on the sphere S would be described by a vector of the compass vertical 
originating at the center of the sphere. Ibe digital computer yields the 
current coordinates for the tra.jectory C, which is the same as B except 
that it is rotated on the sphere S in accordance with the given initial 
conditions for 4, X, 6. These initial conditions indicate the origin and 
the direction of the tra.jectory. In particular, one may say that for any 
maneuvering of the base the considered system of autonomous coordinates 
has no other cumulative error than that which the compass may have in de- 
fining the location vertical. 

4. In conclusion, we introduce the mechanical analogy for an ideal 
horizon gyrocompass. Such an analogy permits a more descriptive inter- 

pretation of the compass vertical be- 
havior for arbitrary base maneuvers 
and for proof of the stability of its 
coincidence with the location vertical 
for the case of simple courses 
[missions 1 . 

An arbitrary maneuver of the base 
on sphere S may be prescribed by the 
unit vector of the local vertical 
r,(t) passed from the center 0’ of 
sphere S (Fig. 4). ‘lbe behavior of an 
ideal horizon gyrocompass in this 
maneuver is fully characterized by 
the unit vector of the compass vertical. 
Indeed, if r,(t) is the unit vector 
for the z-axis of the compass tri- 
hedron, then on the strength of the 
identity 0% = 0 we obtain for the unit 
vectors of the n- and y-axes the ex- 

z 

r;‘ 

/ 0” 
Pig. 4. 

pressions 
[$I = $, r2X r2 

[YI = g2, 

and the angular velocities of the compass trihedron are 

(4.1) 

(4.2) 
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Thus, all quantities entering into the compass equations 

ox = 0 

2B cos 
COY = - 

amR 

(4.3) 

may be expressed by means of r,(t), r,(t) and their derivatives. 

It should be remembered that A!% and My are moments created by the 
gravity forces mgrl and inertia forces in mRrl, i.e. 

F = - mR 
C 
i,+ $ rl> 

and the moment is 

M=--ar,x,r-mR(r,+~r,)] (4.4) 

After calculations 

After substituting (4.2) and (4.5) into (4.3) we have 

(4.6) 

Eliminating 2Bcos c/amR from the last two equations in system (4.61, 
simplifying and considering that 

Fig. 5. 

14 d&l 1 d . . . . 
-= --raa = r,.r, dt 2 dt 

we obtain 

?his yiel 
equation: 

. . . 
r2.rl= G1+$rl 

[ 1 
*;I 

iz. (rlxr;) = i1 + j$rl I- ] .(rlxrl! 

.ds the following differential 
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. . . . g 
r2+&r2=rl+Krl, 14 = Jr21 = 1 (4.7) 

where a is the constraint reaction 1r2 1 = 1. 

Consider now the following mechanical model (Fig. 5). Point A of a 
unit mass is located on a unit sphere and is attracted to another point 
0 on the sphere by the spring with rigidity g/R. Point 0 on the sphere 
is fixed; 0, is the sphere center. 

Denote unit vectors 0,O and OIA by p1 and pp2, respectively, and the 
vector OA as p. lhe motion of the sphere is defined by the vector p,(t). 
lhe equation of motion for point A is 

);=A 1p P-W2 

but since p = pz - p1 

Pa+ap,=i,+j+4, (4.8) 

Equation (4.8) coincides with Equation (4.71,.where p1 is analogous 
to r1 and pt to rp, and therefore in Fig. 5 r1 and r2 are used. Thus, 
the considered model which represents the Schuler pendulum is a mechanical 
analog for an ideal horizon gyrocompass. 

According to this model, the material point is in a potential field 
controlled by an ideal but nonstationary constraint. In the particular 

case of a simple course (rest or motion along 
a parallel with r = const) the uniformly rotat- 
ing vector rl(t) describes a cone of rotation 
(Fig. 6). In a system of coordinates rotating 
with a definite velocity about the cone axis, r, 

the constraint is stationary and the force 
r, 

W 
field remains potential, since to the central 
field is added only a centrifugal force field 

9 

also possessing a potential and the Coriolis Fig. 6. 

forces which do no work at all. Consequently 
there is an energy integral in this case. This 
integral can be obtained directly as follows. Introduce vector o, such 
that 

ri = co x rl (4.9) 

In the general case o= r1 x r1 + yr, for any r1 and y. Perform 
scalar multiplication of (4.7) by the vector 

Using (4.9) we obtain 

r, --(u xr, 
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d 1 -- 
dt 2 

[& * 5 + (r2 - rl) x @J12 + ($ --mB)(rg -0 + [cu.(r2- rl)P} + 

+Qh - il) x (r, - q)} = 0 (4.10) 

The relationship (4.10) is valid for any maneuver rl( t) and for any 
o satisfying (4.9). For a simple course one may take as o a vector 
directed along the stationary cone axis described by rl; in view of the 
constancy of rotation, 1 w ( = const, i.e. & = 0. Expression (4. IO) then 
becomes the energy integral 

. . 
b- rl + (r2 - rl) x WI2 + (5 - aP> (r2 - rl)a + [w.(r, - r,)12 = const (4.11) 

proving the stability of solution r,(t) = r,(t) for all o and for 
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